YEAR 8 - ALGEBRAIC TECHNIQUES...

@whisto_maths	Sequences
What do I need to be able to do? By the end of this unit you should be able to: • Generate a sequence from term to term or position to term rules • Recognise arithmetic sequences and find the nth term • Recognise geometric sequences and find other sequences that arise	s put in a pre-decided order ariable ig is located een terms increases or decreases (+ or -) by a constant value each time between terms increases or decreases in different amounts, or by x or ÷ in two terms are the difference between the terms is constant are each term is found by multiplying the previous one by a fixed non zero
Linear and Non Linear Sequences Linear Sequences – increase by addition or subtraction and the same amount each time Non-Inear Sequences – do not increase by a constant amount – quadratic, geometric and Fibonacci • Do not plot as straight lines when modelled graphically • The differences between terms can be found by addition, subtraction, multiplication or division Fibonacci Sequence – look out for this type of sequence 0 2 3 5 8 Each term is the sum of the previous two terms Each term is the sum of the previous two terms Sequences from algebraic rules 3n ² + 7	Sequence in a table and graphically Position: the place in the sequence
This will be linear - note the single This is not linear as there is a power of n. The values increase at a power for n constant rate $2n - 5 \longrightarrow$ Substitute the number of the term you are looking for in place of n' eg If term = 2 (1) - 5 = -3 2 nd term = 2 (2) - 5 = -1 100 th term = 2 (2) - 5 = -1 100 th term = 2 (100) - 5 = 195 Checking for a term in a sequence Is 201 in the sequence $3n - 47$ Cligebraic rule Solving this will find the position of the term in the sequence ONLY an integer solution can be in the sequence	$\begin{array}{c} \underline{Complex \ algebraic \ rules} \\ \hline 2n^2 \\ (2n)^2 \\ \hline 2 \ times \ whatever \ n \ squared \ is \\ eg \\ pt \ term \ = \ 2x \ p^2 - 2 \\ 2^{st} \ term \ = \ 2x \ p^2 - 2 \\ 2^{st} \ term \ = \ 2x \ p^2 - 2 \\ 100^{th} \ term \ = \ 2x \ 100^2 - 2000 \\ \hline n \ (n \ + \ 5) \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	